Analysis of Simulation of Slender Curved Beams Matlab Help

We did this assignment for

 amitkumar chavan amitchavan358@gmail.com I Shipping address – confirmed amitkumar chavan 623 west ella avenue apt 3 kingsville, TX 78363 United States

But he scammed us; hence we are putting the work online and also informing his university.

Other students can openly reference the code as its now available for everyone.

—-

clc

clear all

% We have eight pair of linear equations for solving our required values of Fx and Fy.

% 1st set of simplified equation=>  2fx+5fy=0.7583 & 0.8fx-6fy=0.4424

% 2nd set of simplified equation=> –1.75fx+3.2fy=1.4582 & 1.9fx+0.6fy=-0.7364

% 3rd set of simplified equation=> 1.3fx+6.2fy=-0.1051 & –0.83fx-4.72fy=0.0608

% 4th set of simplified equation=> 2.2fx-3.18fy=3.4221 & –1.48+0.16fy=-1.3458

% 5th set of simplified equation=> –1.48fx-3.67fy=-0.4144 & 4.9fx-0.3fy=0.0275

% 6th set of simplified equation=> 5.55fx+1.69fy=0.1042 & –0.7fx+3.4fy=0.3468

% 7th set of simplified equation=> 4fx-2fy=0.0297 & 3.7fx+4.65fy=-0.8708

% 8th set of simplified equation=> 2.3fx-3.48fy=0.5307 & 5.29fx-5.21fy=0.8681

%% solving for Fx and Fy of “Fig6”

a= 2; b= 5; c= 0.8; d= –6; c1= 0.7583; c2= 0.4424;

p=[a b; c d]; q=[c1; c2]; r=inv(p)*q;

fx_1=r(1,1); fy_1=r(2,1);

% solving for Fx and Fy of “Fig8”

a= –1.75; b= 3.2; c= 1.9; d= 0.6; c1= 1.4582; c2= –0.7364;

p=[a b; c d]; q=[c1; c2]; r=inv(p)*q;

fx_2=r(1,1); fy_2=r(2,1);

% solving for Fx and Fy of “Fig10”

a= 1.3; b= 6.2; c= –0.83; d= –4.72; c1= –0.1051; c2= 0.0608;

p=[a b; c d]; q=[c1; c2]; r=inv(p)*q;

fx_3=r(1,1); fy_3=r(2,1);

% solving for Fx and Fy of “Fig12”

a= 2.2; b= –3.18; c= –1.48; d= 0.16; c1= 3.4221; c2= –1.3458;

p=[a b; c d]; q=[c1; c2]; r=inv(p)*q;

fx_4=r(1,1); fy_4=r(2,1);

% solving for Fx and Fy of “Fig16”

a= –1.48; b= –3.67; c= 4.9; d= –0.3; c1= –0.4144; c2= 0.0275;

p=[a b; c d]; q=[c1; c2]; r=inv(p)*q;

fx_5=r(1,1); fy_5=r(2,1);

% solving for Fx and Fy of “Fig18”

a= 5.55; b= 1.69; c= –0.7; d= 3.4; c1= 0.1042; c2= 0.3468;

p=[a b; c d]; q=[c1; c2]; r=inv(p)*q;

fx_6=r(1,1); fy_6=r(2,1);

% solving for Fx and Fy of “Fig20”

a= 4; b= –2; c= 3.7; d= 4.65; c1= 0.0297; c2= –0.8708;

p=[a b; c d]; q=[c1; c2]; r=inv(p)*q;

fx_7=r(1,1); fy_7=r(2,1);

% solving for Fx and Fy of “Fig22”

a= 2.3; b= –3.48; c= 5.29; d= –5.21; c1= 0.5307; c2= 0.8681;

p=[a b; c d]; q=[c1; c2]; r=inv(p)*q;

fx_8=r(1,1); fy_8=r(2,1);

%% finally displaying calculated results of Fx and Fy

fprintf(‘calculated value of Fx and Fy for “Fig6” from its given equation are: %f & %f
,fx_1,fy_1);

fprintf(‘calculated value of Fx and Fy for “Fig8” from its given equation are: %f & %f
,fx_2,fy_2);

fprintf(‘calculated value of Fx and Fy for “Fig10” from its given equation are: %f & %f
,fx_3,fy_3);

fprintf(‘calculated value of Fx and Fy for “Fig12” from its given equation are: %f & %f
,fx_4,fy_4);

fprintf(‘calculated value of Fx and Fy for “Fig16” from its given equation are: %f & %f
,fx_5,fy_5);

fprintf(‘calculated value of Fx and Fy for “Fig18” from its given equation are: %f & %f
,fx_6,fy_6);

fprintf(‘calculated value of Fx and Fy for “Fig20” from its given equation are: %f & %f
,fx_7,fy_7);

fprintf(‘calculated value of Fx and Fy for “Fig22” from its given equation are: %f & %f
,fx_8,fy_8);

%% Plotting “Fig6” to “Fig22”

close all

z=180;

theta=z;

x0=1; y0=1;

r=1;

a1 = 2*pi*r;

a2 = a1 + theta;

t = linspace(a1,a2);

x = x0 + r*cos(t);

y = y0 + r*sin(t);

figure(6) %fig6

plot([x*1.3],[y],‘r’) % fig6

axis ([-0.5 3 0 2.5]) % fig6

figure(8) %fig8

plot([x],[y*1.3],‘r’) % fig8

axis ([-0.2 2.2 1 2.8]) % fig8

z=220;

theta=z;

x0=1; y0=1;

r=1;

a1 = 2*pi*r;

a2 = a1 + theta;

t = linspace(a1,a2);

x = x0 + r*cos(t);

y = y0 + r*sin(t);

figure(10) %fig10

plot([x],[y+1],‘r’) % fig10

axis ([-0.2 2.2 1.2 3.2]) % fig10

z=180;

theta=z;

x0=1; y0=1;

r=1;

a1 = 2*pi*r;

a2 = a1 + theta;

t = linspace(a1,a2);

x = x0 + r*cos(t);

y = y0 + r*sin(t);

figure(12) %fig12

plot([x*1.7],[y],‘r’) % fig12

axis ([-0.2 3.6 0 2.5]) % fig12

% ———————————–

z=220;

theta=z;

x0=1; y0=1;

r=1;

a1 = 2*pi*r;

a2 = a1 + theta;

t = linspace(a1,a2);

x = x0 + r*cos(t);

y = y0 + r*sin(t);

figure(16) %fig16

plot([x+1],[y],‘r’) % fig16

axis ([0.9 3.2 0.2 2.2]) % fig16

figure(18) %fig18

plot([x+0.15],[y+1],‘r’) % fig18

axis ([0 2.2 1.2 3.1]) % fig18

figure(20) %fig20

plot([x+0.25],[y+1],‘r’) % fig20

axis ([0 2.4 1.2 3.1]) % fig20

Posted on May 2, 2017 in Uncategorized